AM ACKER TIPPE T WOLFCAMP FIELD
UP TON COUNTY, T EXAS

Mary Van Der Loop
Energy Exploration Management Co.
Midland, Texas

ABSTRACT

Amacker Tippett Wolfcamp field is a large stratigraphic trap located in the southwestern
corner of the Midland Basin in south central Upton County, Texas. It has produced over 16
MMBO and 26 BCF gas since discovery in 1954. Extensive field development occurred during
1978-83.

The field produces from deep water carbonate grainflows, debris flows, and large fractured
slide blocks of Wolfcamp age, which were deposited on the downthrown side of an active fault
zone; Wolfcamp shelf rocks were deposited on the upthrown southern side.

INTRODUCTION

Amacker Tippett Wolfcamp field, a large, enigmatic stratigraphic trap, is located in the southwestern
area of the Midland Basin in south central Upton County, Texas (Figure 1). From
eleven different Texas Railroad Commission field classifications of approximately the same stratigraphic unit, it has produced over 16 MMBO and 26 BCF gas from 87 wells. There is also
production in the Amacker Tippett area from structural traps in the Ellennyer, Fusselman, Devonian and structural-stratigraphic accumulations in the Bend and Strawm. Those horizons will
not be discussed in this paper.

First Wolfcamp production was established in 1954. However,
the most significant field development did not occur until
about 1978 through 1983, when the most prolific Wolfcamp
production was discovered during drilling to deeper objectives.
Depositional setting and age of the producing horizons has been
and continues to be a subject of much discussion and interest.

METHODS

This study was initiated in 1986 to evaluate BHP Petroleum
(Americas) Inc.’s working interests in the Wolfcamp producing
horizons. A network of cross sections and a series of maps
were constructed on different correlatable log markers and used to
develop the interpretation presented here. All available commer-
cial sample logs and commercial paleontological (Hollingsworth)
data were used. Cuttings were examined on five wells, and cores
in two wells were described. Based on examination of commer-
cial sample logs, two cores, and cuttings from five wells, a
correlation was made from observed lithology to electric log
character.

Geologic Description

The Amacker Tippett Wolfcamp Field pay zone is a mappable
limestone and shale body 250' (76m) to 800' (259m) thick, at a
depth of 8,700' (2650m). It has a characteristic, correlatable
electric log signature (Figure 2). Clean, thick bedded limestones
which are locally present and porous at the base of the pay zone,
shale upward to thin bedded shaley limestones and interbedded
shales, which are in turn capped by 100' of shale. Laterally, this
correlative unit extends both to the west and east of the Amacker
Tippett area. It thins markedly northward (Figure 3) into the
basin (Figure 4), and to the south (shelfward), it makes an abrupt
transition to blocky limestone and loses its definitive log charac-
ter.

Underlying the Amacker Tippett unit are black and brown
shales and shaley, spiculitic, siliceous limestones. The contact
of this unit and the underlying shales is highly undulatory, with up
to 350' (107m) of structural relief (Figure 5, 6). Dipmeter data
from the shales directly underlying the base of the unit document
up to 16° of anomalously directed dip compared to regional dip
of 2° to the northeast.

The thick bedded, clean basal limestones are white to buff
fusulinid-algal packstones and grainstones, locally cross bedded
and rarely dolomitized (Figure 7). Cross bedding in the cores
appeared to be in opposing directions. This fusulinid algal
grainstone is commonly porous and comprises the major pay
interval. It correlates on the log with zones that have ≤25 GR API
unit readings (Figure 2). An isopach of the inferred fusulinid
algal grainstone shows a number of NE-SW trending thickens,
which correspond to structural lows on the base-of-unit structure
map (Figure 8). By comparing logs and production histories, pay
can be defined as ≤25 GR API units and ≥3% porosity. There are
only a few instances where wells produced from porous zones
with ≥25 GR API unit readings. Examination of cores in these
rare intervals suggests they are dolomitized zones. Quality of the
pay is highly variable, with stacked zones 10-50' thick and
porosity ranging from 3 to 15% (Figure 9).

Overlying the fusulinid-algal grainstone beds, in gradational
contact, is a shaling upward sequence which, in core, is a poorly
sorted gray intraclastic limestone with clasts ranging in size from
5" (13cm) to 6" (1.8m) (Figure 10a). This boulder-cobble bed in
turn grades upward into a gray to black shaley limestone with
abundant crinoids and small (<1cm) intraclasts (Figure 10b,c).
The entire unit is capped by a dark gray shale about 100' (30m)
thick. Structure at the top of the dark shale cap seems to drape
over the underlying thickens (Figure 3, 4).

In one area within the Amacker Tippett Field (NW/4 Section
78, Block Y, GC&SF), three wells have encountered an anom-
alous, thick (850', 259m) body of limestone, with a markedly
different log character (all clean ≤25 GR unit API, "chattery" 5-
6% porosity, no fining upward sequence) and a different facies
Figure 1. Index map showing location of field in Permian Basin of West Texas. Arrow points to Amacker Tippett Wolfcamp field. Permian Basin sub-provinces as follows: RU Roosevelt Uplift; MA Matador Arch; NWS Northwest Shelf; SSC San Simon Channel; HA Horseshoe Atoll; DP Diablo Platform; DB Delaware Basin; CBP Central Basin Platform; MB Midland Basin; ES Eastern Shelf; SC Sheffield Channel; OP Ozona Platform; VVB Val Verde Basin; DRU Devils River Uplift.
Figure 2. Type log for Amacker Tippett Wolfcamp field study.

(Figure 11). Cuttings studies suggest that this unit is a white to light buff Tubiphytes-algal wackestoneto grainstone, with bryozoans, forams, crinoids, fusulinids, and some dasycladacean algae. No cores are available from this unit. This unit, and the immediate surrounding area, is the most prolific pay in the field.

Paleontology

The Dean Sand (Figure 12), an extensive regional marker bed deposited over the whole Midland basin, blankets the Amacker Tippett area. Below the Dean Sand lie 300-400' of gray and brown shaley intraclastic basinal limestones. These have been dated Wolfcamp “Upper Hueco” from fusulinid identifications by Hollingsworth Paleontological laboratories. However, recent work (Jear, 1978; Mazzullo, et al, 1987; Vechtel, et al, 1985; Gawkowski, 1987) has redated these beds as Early Leonard, based on basin-wide correlations to Glasscock County and other areas. Underlying these limestones is a significant regional shale marker that can be traced by log correlations, with only local difficulty, over most of the Midland Basin. This marker has customarily been called the “Wolfcamp Shale Marker”. Underlying this shale lies the Amacker Tippett producing complex. The producing horizons have also been dated Wolfcamp “Upper

Hueco” by Hollingsworth. Underlying the Amacker Tippett producing horizons are 300-600' of dark shales with brown, gray and white intraclastic limestones, dated Wolfcamp “Lower Hueco” by Hollingsworth. No Cisco and Canyon fusulinids are reported in this area and this section is assumed to be represented by a starved Basin shale section (Adams, et al, 1951).

The Amacker Tippett pay zone has recently been re-dated Early Leonard by Al Reid (personal communication, 1990). This redating is based on re-examination of Hollingsworth fusulinid data from the Amacker Tippett field, and on fusulinid identifications in the Chevron #21 Mclroy Ranch M core, Sec. 141, Block E, CSCDRGNG in the King Mountain field, three miles west of the Amacker Tippett field (Becher & Von Der Hoya, 1990). However, in a core from the BHP Petroleum #3 Amacker, Section 80, Block Y, GCSF, Garner Wilde identified Middle and Upper Wolfcamp fusulinids in the Amacker Tippett pay zone (Garner Wilde, personal communication 1988).

This age discrepancy could be caused by Wolfcampian fusulinids being reworked in Early Leonard time, or by rapid lateral change in ages of the depositional units between the Amacker Tippett field and the King Mountain field. Based on the
Figure 3. Isopach Map, total Amacker Tippett Wolfcamp carbonate interval. Amacker Tippett Unit is absent south of wavy line on map.
Figure 4. Structure at top of Amacker Tippett Wolfcamp carbonate interval. Amacker Tippett Unit is absent south of wavy line.
Figure 5. Structure at base of Amacker Tippett Wolfcamp carbonate interval. Amacker Tippett Unit is absent south of wavy line.
Figure 6. Stratigraphic facies cross section, Amacker Tippett Wolfcamp field, northwest to southeast through “D” (Section 81-82) reservoir of Table 1.
above data and my own regional correlations, I propose the stratigraphic column in Figure 12, which was constructed with data from Ross (1962, 1963), Silver & Todd (1969), Jeary (1978), Wilde (1983), and Mazzullo et al. (1987).

Reserves

The Amacker Tippett Wolfcamp field can be mapped as two main depositional channels. These channels are defined by highs at the top of the Wolfcamp shale marker (Figure 4) which coincide with troughs at the base of the pay carbonate (Figure 5), and by isopachs of the gross interval (Figure 3), gross clean interval, net clean carbonate (Figure 8), and net clean porous (pay) carbonate (Figure 9). Within these channels, all wells which have greater than 50' of net pay carbonate (excluding the Section 78 anomalous feature) have an average production of 325 MBO, estimated ultimate recovery, per well. Field wide average production for every Wolfcamp completion (many were re completions of deeper holes) is only 60 MBO per well. It is obvious the better reserves are within the channels, even though production at first glance seems erratically distributed.

The channels can be divided into seven or more isolated reservoirs or pods, five of which are included in Table 1. Each of the pods can be considered a separate reservoir, and each has a varying degree of pressure communication. A statistical analysis of drilling risk in development of the field has shown to be a 40% chance of economic completion. However, those wells which encountered the channel thickness (250' clean carbonate, 77m) have a 75% chance of economic completion.

<table>
<thead>
<tr>
<th>Pool</th>
<th># Wells</th>
<th>Production MBOD</th>
<th>EUR MBOE</th>
<th>Reserves Per Well MBOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Barrett F)</td>
<td>8</td>
<td>5,346</td>
<td>10,700</td>
<td>1,337</td>
</tr>
<tr>
<td>B (Sec. 77)</td>
<td>2</td>
<td>1,553</td>
<td>5,300</td>
<td>2,650</td>
</tr>
<tr>
<td>C (Sec. 75-76)</td>
<td>8</td>
<td>1,419</td>
<td>5,000</td>
<td>625</td>
</tr>
<tr>
<td>D (Sec. 81-82)</td>
<td>7</td>
<td>1,301</td>
<td>1,486</td>
<td>212</td>
</tr>
<tr>
<td>E (Four Corners)</td>
<td>8</td>
<td>3,674</td>
<td>4,406</td>
<td>551</td>
</tr>
</tbody>
</table>

Regional Setting

Regionally, the Amacker Tippett reservoir rocks were deposited in a structural low, that apparently has persisted since early Pennsylvanian time (Figure 13). It is north of and on the downthrown side of the major east-west Big Lake Fault, which defines the southern boundary of the Middle Basin, and was active from Pennsylvanian (Atokan) through Wolfcampian time. The fault first became active sometime during the Atokan. The Amacker structural trough lies east (basinward) of the Central Basin Platform's major bounding fault (Hills, 1970). It accumulated up to 400' of Strawn detritus between two NW-SE trending eroded highs, the Amacker Ellenburger and King Mountain Ellenburger structures (Bebout and Meador, 1985).

About 350' of Cisco-Canyon shelf carbonates were deposited in Heluma and McCamey areas, 8 miles south and west of the Amacker area. However, no Cisco-Canyon age carbonates are reported in the Amacker area. This stratigraphic interval may be represented by a glauconitic shale (Jones, 1975; Adams et al., 1951) inferring that the entire Amacker area, including the two nearby Ellenburger fields, were in a basin setting at Cisco-Canyon time.

Approximately 1100' (338m) to 1500' (462m) of dolomitized Upper and Lower Hueco (Wolfcampian) carbonates are reported on McCamey and Heluma fields on the Central Basin Platform (based on Hollingsworth Paleo data). The present structural position of these dolomitized carbonates is 1900-3700' higher than the present structural top of the Wolfcamp Shale marker in the Amacker area.

Early Permian time has been documented as a period of major fault activity in the Permian Basin (Young, 1960; King, 1962; Hills, 1970; Wilde, 1983; Font & Sayre, 1984) and consequently has affected sediment deposition. Two thousand feet of additional section on the downthrown (north) side of the Big Lake fault is documented by the Gulf #1 & 2 Ernestine Freeman wells (Section 22, Block 2, MK&T Survey) (Figure 14).

The Amacker Tippett unit is blanketed by 100' of dark basinal shales and by fine grained sands and basinial carbonate deposits of the Lower Leonard, Dean Sand, and Spraberry Sands (Jeary, 1978; Silver & Todd, 1969). The conclusion is then, of course, from facies seen in the cores and from the regional setting that the Amacker Tippett carbonate rocks were shallow water carbonates redeposited in a basin setting during Early Permian time.

Depositional Model

The Central Basin Platform was a periodically exposed positive feature rimmed by carbonate margins, which dropped off rapidly steepening shelf edges into a rapidly deepening shelf basin (Mazzullo, 1983). Carbonate detritus in various forms was shed off these carbonate reefs and accumulated near the basin margins (Yusas, 1984; Hobson et al., 1985 a & b; Becher & Von Der Hoya, 1990).

Two different depositional models have been proposed for the deposition of carbonate detritus:

A. Fan Model (from the clastic model)
 I. Channelized flow from a point source
 II. Components:
 1. Inner fan - leveed fan valley
 2. Mid fan - distributary channels
 3. Lower fan - lobes

B. Apron Model (Mullins & Cook, 1986)
 I. Line source rather than point source
 II. Apron position relative to slope
 1. Slope apron
 a. Deposited on gentle slopes, 4° or less
 b. No bypass zone
 2. Base of slope apron
 a. Deposited from steep slopes (4-15°)
 b. Has bypass zones
 c. Inner apron (thick conglomerate & megabreccias, coarse grained material)
 d. Outer apron (finer grained, grain supported turbidites).

The deposit at Amacker Tippett compares more closely to the base of slope apron model. The following observations led to this conclusion: 1) The channels on isopach maps point to three sources along the faulted Lower Permian Shelf line; 2) the abrupt
The literature on carbonate detritus cites evidence of megabreccias on a similar scale. Cropping out in the Sierra Diablo mountains of West Texas, a 150' (46 M) anomalous boulder known as the Kriz lens has been interpreted as a submarine slide block off the Victoriocan Flexure; it is Upper Huco in age (Wilde, 1983). In Yugoslavia, Marjanac (1985) reported maximum thickness of a single carbonate detrital block in outcrop as 982' (300 M). Carbonate detrital deposits of greater magnitude have been reported in the Devonian of Canada; channels 600' (180 M) deep, 1200' (366 M) wide, with clasts to 325' (100 M) in size (McIlreath, 1977, Cook, 1983). A Miocene slide scar on the Florida escarpment is 18.6 miles (30 km) across and 900-1150' (300-350 M) deep (Mullins, et al, 1986). In the Delaware Basin, a slide block of Mississippian age rocks is 16 miles (26 km) x 9 miles (14 km) x 2000' (610 M), includes a recumbent fold, and is encased in Huco (Wolfcampian) age shales (Guinan, 1971; Font and Sayre, 1984). Such deposits require either severe oversteepening of the shelf edge, earthquake activity, gravity induced collapse, or gravity sliding to create such megabreccias and/or slides, and the Lower Permian has been well documented as a time of severe structuring in the Permian Basin (Hills, 1970; Young, 1960; Wilde, 1983; Font & Sayre, 1984).

Early Permian (Middle Wolfcamp) time is documented as a major sea level lowstand in the entire Permian Basin, which resulted in the Middle Wolfcamp unconformity (Hills 1970). It has been proposed that the Amacker Tippett rocks were deposited in shallow water (Mazzullo, 1982; Farmer, 1986), during a sea level lowstand. While such a lowstand certainly existed, certain lines of evidence suggest that these shallow water rocks accumulated as base of slope and basin deposits; the diameter anomalies and channel-like structure map at the base of the carbonate both imply scours at time of deposition. In addition, reefs generally have a structurally high antecedent toposraphy (Wilson, 1975; Mullins, 1983) yet structurally high portions of the Amacker area have thin Wolfcamp pay carbonates, and structurally low portions show a thicker accumulation. The best pay zones, predominantly the grainstone and slide block facies, are interbedded with and blanketed by thick deposits of coarse carbonate debris which decrease in basin size upward, and are mantled by thick basinl shales. It is interesting to note that this sequence has a basin floor fan covered by slope deposits and finally blanketed by basinl shales. Therefore, it is similar to the Vail model of deposition during a sea level lowstand and subsequent sea level rise (Vail, 1977).

CONCLUSIONS

The highly productive Wolfcamp reservoir at Amacker Tippett Field is a basinl deposit. It is a carbonate debris flow which follows channelized lows and is interbedded with grainflows and occasional large slide blocks of shallow water material. These reservoir sediments accumulated in a localized area in a structural trough at the foot of the juncture of two actively moving fault zones. Eroding and/or actively growing Lower Permian shelf edges lie on the upthrown sides of those adjacent faults. A deepwater barrier to this debris accumulation was provided by the growing basinal structure of the Amacker Ellenburger field. This carbonate debris deposit has proven to be a highly economic drilling target in this field.
Figure 8. Isopach of the net clean carbonate (≤ 25 GR API units) Amacker Tippett Wolfcamp carbonate interval.
Figure 9. Isopach of the net porous (≥3%) clean (≤25 GR API units) carbonate, Amacker Tippett Wolfcamp carbonate interval.
Figure 10a. Core photograph, BHP Petroleum (Americas) Inc. #3 Amacker 80, 1698' FNI & 1142' FWL, Sec. 80, Blk. Y, GCSF, 8925'. Carbonate debris flow, large clast facies. Clasts are crinoid algal wackestones and mudstones.

ACKNOWLEDGEMENT

Thanks are due to BHP Petroleum (Americas) Inc. for their kind permission to publish this work. Cecil Roundyville and Dick Bledsoe (Quick Draw Drafting) did the drafting and Karen Raymond (Toorco Exploration) typed the manuscript, and I thank them for their help.

REFERENCES

Figure 10b. Core photograph, BHP Petroleum (Americas) Inc. #3 Amacker 80, 1698' FNI & 1142' FWL., Sec. 80, Blk. Y, GCSF, 8925'. Carbonate debris flow, small clast facies. Clasts are black shales, mudstones, crinoid wackestones, and tubiphytes-coral-algal packstones.

Discussion and Reply, Vol. 73 #9, May 1984, p. 21.

Discussion and Reply, Vol. 24 #1, September 1984, p. 21.

Figure 10c. Core photograph, BHP Petroleum (Americas) Inc. #3 Amacker 80, 1698' FNL & 1142' FWL, Sec. 80 Blk. Y, GCSF, 8849'. Carbonate debris flow, small clast facies. Clasts are mudstones, fusulinid packstones. Loose crinoid columnals and fusulinids incorporated in gray shaly matrix. Note upward gradational contact with black shale.

Marjanac, T., 1985, Composition and origin of the megabed containing huge clasts, Flysch Formation, Middle Dalmatia, Yugoslavia; International Association of Sedimentologists European Regional Meeting, 6th, Lleida, Spain, Abstracts, p. 270-273.

Mullins, H. T., 1983, Modern Carbonate Slopes and Basins of the Bahamas: in Platform Margin and Deep Water Carbonates, SEPM Short Course #12, p. 4-1 — 4-138.

Vail, P. R., et al, 1977, Seismic Stratigraphy and Global Changes of Sea Level, in Seismic Stratigraphy - Applications to Hydrocarbon Exploration; AAPG Memoir 26, p. 49-212.

